HPCx: A New Resource for UK Computational Science

Mike Ashworth, Ian J. Bush, Martyn F. Guest, Martin Plummer and Andrew G. Sunderland

CLRC Daresbury Laboratory, UK
m.f.guest@dl.ac.uk

and

Stephen Booth, David S. Henty, Lorna Smith and Kevin Stratford

EPCC, University of Edinburgh, UK

http://www.hpcx.ac.uk/
Outline

• HPCx Overview
 – HPCx Consortium
 – HPCx Technology - Phases 1, 2 and 3 (2002-2007)

• Performance Overview of Strategic Applications:
 – Computational Materials
 – Molecular Simulation
 – Molecular Electronic Structure
 – Atomic and Molecular Physics
 – Computational Engineering
 – Environmental Science

• Evaluation across a range of Current High-End Systems:
 – IBM SP/p690, SGI Origin 3800/R14k-500, HP/Compaq AlphaServer SC ES45/1000 and Cray T3E/1200E

• Summary

Applications, and not H/W driven
HPCx Project overview

- A joint venture between the Edinburgh Parallel Computing Centre (EPCC) at the University of Edinburgh and the Daresbury Laboratory of the Central Laboratory for the Research Councils (CLRC)
- Project funded to £53M (~$120M) by UK Government
- Established to operate and support the principal academic and research computing service for the UK
- Principal objective being to provide a Capability Computing service to run scientific applications that could not be run on any other available computing platform
- Six-year project with defined performance requirements at year 0, year 2 and year 4 so as to match Moore’s Law
- IBM chosen as the technology partner with Power4 based p690 platform, and the “best available interconnect”
Consortium partners

- **EPCC (University of Edinburgh)**
 - established in 1991 as the University’s interdisciplinary focus for high-performance computing and commercial exploitation arm
 - has hosted specialised HPC services for the UK’s QCD community since 1989. 5Tflop QCDOC system due 2003 in project with Columbia, IBM and Brookhaven National Laboratory
 - operated and supported UK national services on CRAY T3D and T3E systems from 1994 until 2002

- **CLRC (Daresbury Laboratory)**
 - HPC service provider to the UK academic community for > 25 yrs
 - research, development & support centre for leading edge academic engineering and physical science simulation codes
 - distributed computing support centre for COTS processor & network technologies, evaluating scalability and performance
 - UK grid support centre
Phase 1 (Dec. 2002): 3 TFlop/s Rmax Linpack

- 40 Regatta-H SMP compute systems (1.28 TB memory)
 - 32 x 1.3GHz processors, 32 GB memory; 4 x 8-way LPARs
- 2 Regatta-H I/O systems
 - 16 x 1.3GHz processors (Regatta-HPC), 4 GPFS LPARS
 - 2 HSM/backup LPARS, 18TB EXP500 fibre-channel global filesystem
- Switch Interconnect
 - Existing SP Switch2 with "Colony" PCI adapters in all LPARs
 (20 us latency, 350 MB/s bandwidth)
 - Each compute node has two connections into switch fabric
 (dual plane)
 - 160 x 8-way compute nodes in total
- Ranked #9 in the TOP500 list (November 2002)
Phase 2 (2004): 6 TFlop/s Rmax Linpack
- >40 Regatta-H+ compute systems
 - 32 x 1.8GHz processors, 32 GB memory, full SMP mode (no LPAR)
- 3 Regatta-H I/O systems (Double the capabilities of Phase 1)
- "Federation" switch fabric
 - bandwidth quadrupled, ~5-10 microsecond latency, Connect to GX bus directly

Phase 3 (2006): 12 TFlop/s Rmax Linpack
- >40 Regatta-H+ compute systems
 - unchanged from Phase 2
- >40 additional Regatta-H+ compute systems
 - double the existing configuration
- 4 Regatta I/O systems (Double the capabilities of Phase 2)

Open to Alternative Technology Solutions (IPF, BlueGene/L ..)
HPCx - Phase 1 Technology at Daresbury

July 2002

November 2002
Four POWER4 chips (8 processors) on an MCM, with two associated memory slots.
Serial Benchmark Summary

Performance relative to the SGI Origin 3800/R12k-400

OVERALL

GAMESS-UK

DLPOLY

Chem. Kernels

MATRIX-97

Intel Tiger Madison 1.2GHz
Cray T3E/1200E
SGI Origin 3800/R12k-400
HP/Compaq ES45 1 GHz
IBM SP/p690 1.3 GHz
SPEC CPU2000: SPECfp vs SPECfp_rate (32 CPUs)

Values relative to the IBM 690 Turbo 1.3 GHz

- Compaq Alpha GS320/731
- Compaq Alpha GS320/1000
- SGI Origin3800/R12k-400
- SGI Origin3800/R14k-500
- SGI Origin3800/R14k-600
- HP Superdome/PA8600-552
- HP Superdome/PA8700-750
- IBM 690 Turbo 1.3 GHz
Capability Benchmarking and Application Tuning

• Materials Science
 – CASTEP, AIMPRO & CRYSTAL
• Molecular Simulation
 – DL-POLY & NAMD
• Atomic & Molecular Physics
 – PFARM and H2MOL
• Molecular Electronic Structure
 – GAMESS-UK & NWChem
• Computational Engineering
 – PDNS3D
• Environmental Science
 – POLCOMS
Systems Used In Performance Analysis

• IBM Systems
 – IBM SP/Regatta-H (1024 procs, 8-way LPARs) HPCx system at DL
 – Regatta-H (32-way) and Regatta HPC (16-way) (Montpelier)
 – SP/Regatta-H (8-way LPARs, 1.3 GHz) at ORNL

• HP/Compaq AlphaServer SC
 – 4-way ES40/667 (APAC) and 833 MHz SMP nodes;
 – TCS1 system at PSC: 750 4-way ES45 nodes - 3,000 EV68 1 GHz CPUs, with 4 GB memory per node
 – Quadrics “fat tree” interconnect (5 usec latency, 250+ MB/sec B/W)

• SGI Origin 3800
 – SARA (1000 CPUs) - NumaLink - with R14k/500 and R12k/400 CPUs
 – CSAR (512 CPUs) - NumaLink - R12k/400

• Cray T3E/1200E
 – CSAR (788 CPUs)
AIMPRO

(Ab Initio Modelling PROgram)
Patrick Briddon et al, Newcastle University

http://aimpro.ncl.ac.uk/

CRYSTAL

Properties of crystalline systems
periodic HF or DFT Kohn-Sham Hamiltonian
various hybrid approximations

http://www.cse.clrc.ac.uk/cmg/CRYSTAL/

CASTEP

CAMbridge Serial Total Energy Package

http://www.cse.clrc.ac.uk/cmg/NETWORKS/UKCP/
The AIMPRO benchmark

![Graph showing performance (10000/time) vs. number of processors for different systems.]

- **SGI Origin 3800/R12k-400**
- **IBM SP/p690**

Performance (10000/time) vs. Number of processors:
- SGI Origin 3800/R12k-400:
 - x4.3 at 32 processors
 - x2.3 at 64 processors
 - x1.6 at 256 processors

- IBM SP/p690:
 - Performance increases with the number of processors.

Notes:
- 216 atoms: C impurity in a Si lattice;
- 5180 basis functions;
- Limited by ScaLaPack routine PDSYEVX.
Scalability of Numerical Algorithms I.

SGI Origin 3800/R12k-400 ("green")

Fock matrix (N = 1152)

- PeIGS 2.1
- PeIGS 2.1 - Cray T3E/1200
- PeIGS 3.0
- PDSYEV (Scpk 1.5)
- PDSYEVD (Scpk 1.7)

Real symmetric eigenvalue problems

Fock matrix (N = 3888)

- PeIGS 2.1
- PeIGS 3.0
- PDSYEV (Scpk 1.5)
- PDSYEVD (Scpk 1.7)
- BFG-Jacobi (DL)
Scalability of Numerical Algorithms II.

IBM SP/p690 and SGI Origin O3800/R12k

Real symmetric eigenvalue problems

Time (secs.)

N = 3,888

Time (secs.)

N = 9,000
Direct minimisation of the total energy (avoiding diagonalisation)

\[
\psi_j(\vec{r}) = \sum_{\vec{G}} C_{j,\vec{G}} e^{-i(\vec{k} + \vec{G}) \cdot \vec{r}}
\]

- Pseudopotentials must be used to keep the number of plane waves manageable.
- Large number of basis functions \(N \sim 10^6 \) (especially for heavy atoms).

The plane wave expansion means that the bulk of the computation comprises large 3D Fast Fourier Transforms (FFTs) between real and momentum space.

- These are distributed across the processors in various ways.
- The actual FFT routines are optimized for the cache size of the processor.
CASTEP 4.2 - kG Parallel Benchmark

Performance Relative to the Cray T3E/1200E

- IBM SP/p690
- AlphaServer SC ES45/1000
- SGI Origin 3800/R14k-500

TiN: A 33 atom slab of TiN, 8 k points, single energy calculation
- 88,000 plane waves
- 3D FFT: 108X36X36
- Vanderbilt pseudopotential

Bottleneck:
Data Transformation associated with 3D FFT & MPI_AlltoAllV
• Applying a dense Monkhorst Pack (MP) mesh to the 8 k-point test, leading to 32 k-points
• respectable performance
• large numbers of k-points typical for calculations of metals
Scalability of CRYSTAL for Crystalline Crambin

IBM SP/p690 HPCx

Structure of Crambin is derived from XRD data at 0.52 Å (1284 atoms).

faster, more stable version of the parallel Jacobi diagonalizer replaces ScaLaPack
Molecular Simulation

DL_POLY
W. Smith and T.R. Forester, CLRC Daresbury Laboratory

General purpose molecular dynamics simulation package

http://www.cse.clrc.ac.uk/msi/software/DL_POLY/

NAMD
Theoretical and Computational Biophysics Group, NIH

• Parallel, object-oriented molecular dynamics code
• High-performance simulation of large biomolecular systems
• Scales to hundreds of processors on high-end parallel platforms

http://www.ks.uiuc.edu/Research/namd/
DL_POLY V2: Replicated Data

Macromolecular Simulations

Bench 7: Gramicidin in water; rigid bonds and SHAKE, 12,390 atoms, 500 time steps

Ionic Simulations

Bench 4: NaCl; 27,000 ions, Ewald, 75 time steps, Cutoff=24Å
Alternative FFT algorithm to reduce communication costs:
- 3D FFT performed as a series of 1D FFTs, each involving communications only between blocks in a given column
- More data is transferred, but in far fewer messages
- Rather than all-to-all, the communications are column-wise only
DL_POLY3 Macromolecular Simulations

Measured Time (seconds)

Performance Relative to the SGI Origin 3800/R14k-500

Gramicidin in water; rigid bonds + SHAKE: 792,960 ions, 50 time steps
Molecular Simulation - NAMD Scaling

- standard NAMD ApoA-I benchmark, a system comprising 92,442 atoms, with 12Å cutoff and PME every 4 time steps.
- scalability improves with larger simulations - speedup of 778 on 1024 CPUs of TCS-1 in a 327K particle simulation of F$_1$-ATPase.

http://www.ks.uiuc.edu/Research/namd/

NAMD scaling (logarithmic)

- Origin 250MHz
- Platinum 1 GHz (2ppn)
- Platinum 1 GHz (1ppn)
- Titan 800 MHz (2ppn)
- Titan 800 MHz (1ppn)
-POWER4 1.3 GHz (HPCx)
- ES45 1 GHz (LeMieux)
Ab Initio Molecular Electronic Structure

GAMESS-UK - DFT Calculations:
- Global Array (GA) Tools from PNNL
- Parallel Eigen Solvers (PeIGS)

Valinomycin (DFT HCTH):
Basis: DZVP2_A2 (Dgauss)
(1620 GTOs)

Bottlenecks:
LAPI + Matrix Diagonalisation

Elapsed Time (seconds)

Number of CPUs

GAMESS-UK - DFT Calculations:
– Global Array (GA) Tools from PNNL
– Parallel Eigen Solvers (PeIGS)

Valinomycin (DFT HCTH):
Basis: DZVP2_A2 (Dgauss)
(1620 GTOs)

Bottlenecks:
LAPI + Matrix Diagonalisation

Elapsed Time (seconds)
PFARM
Queen’s University Belfast, CLRC Daresbury Laboratory

R-matrix formalism to treat applications such as the description of the edge region in Tokamak plasmas (fusion power research) and for the interpretation of astrophysical spectra

H2MOL
Queen’s University Belfast

Solves the time-dependent Schrödinger equation to calculate energy distributions for laser-driven dissociative ionization of H₂ molecule.
• R-matrix theory - efficient methods for investigating electron-atom and electron-molecule collisions.

• Calculation involves integration of up to 10^3 coupled channels i.e. 2$^{\text{nd}}$ order linear differential equations.

• External Region Calculation Timings:
 – Data from internal region calculations (from disk)
 – 2 stage approach - Diagonalisation [PelGS (20%, 4K)] and functional task parallelisation (80%) - BLAS3 dominated
 – Systolic processor pipeline approach.
 – Coarse-grained parallelism ensures scalable performance.
 – Asynchronous communications minimises communication costs.

• Benchmark Example for PFARM application
External Region Calculation Timings

PFARM Performance Ratio vs. Cray T3E/1200E

Elapsed Time (seconds)

PFARM - Breakdown of Time on IBM SP/p690

Bottleneck: Matrix Diagonalisation
H2MOL - Performance on the IBM SP/p690

- Solves the time-dependent Schrodinger equation to calculate energy distributions for laser-driven dissociative ionization of H$_2$ molecule.
- Cylindrical computational grid of ϕ, ρ and Z co-ordinates. Z points are distributed over processors arranged logically in a triangular grid.
- Most time spent calculating 5-point finite difference schemes and in ZGEMM. MPI collectives relatively expensive for extremely large processor grids.
- Main optimisations: improving ZGEMM performance for small matrix sizes and using asynchronous message passing.
- Improved scalability for larger grid sizes.
UK Turbulence Consortium
Led by Prof. Neil Sandham, University of Southampton

- Focus on compute-intensive methods (Direct Numerical Simulation, Large Eddy Simulation, etc) for the simulation of turbulent flows
- Shock boundary layer interaction modelling - critical for accurate aerodynamic design but still poorly understood

http://www.afm.ses.soton.ac.uk/
Direct Numerical Simulation: 360^3 benchmark

Performance (million iteration points/sec) vs. Number of processors

- IBM SP/p690 (ORNL)
- Cray T3E/1200E
- IBM SP p/690 (HPCx)
- Scaled from 128 CPUs

33rd May 2003
HPCS 2003, Sherbrooke
14th May 2003
Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS)

Multidisciplinary Studies in coastal/shelf environments

http://www.pol.ac.uk/home/research/polcoms/
3D baroclinic hydrodynamic coastal-ocean model

POLCOMS Structure

Meteorological forcing

UKMO Operational forecasting

Climatology and extreme statistics

Tidal forcing

UKMO Ocean model forcing

Fish larvae modelling

Contaminant modelling

ERSEM biology

Sediment transport and resuspension

Realistic physical forcing to interact with, and transport, environmental parameters
POLCOMS resolution benchmark

- Standard workhorse model is a 12 km resolution grid covering the whole of the north-west European shelf (198 x 224 x 34)
- Want to maintain accuracy in the presence of eddies, fronts, steep topography, thermoclines etc.
- Scientific requirement heading to 1 km shelf-wide resolution
- Design set of benchmarks
 - 12 km (200 x 200 x 34)
 - 6 km (400 x 400 x 34)
 - 3 km (800 x 800 x 34)
 - 2 km (1200 x 1200 x 34)
 - 1 km (2400 x 2400 x 34)
- Fixed number of timesteps => decreasing run length
- Short run, subtract start-up and shut-down times
- Performance metric is \(\text{gridpoints} \times \text{timesteps} / \text{time} \)
POLCOMS resolution b/m : IBM SP/p690

Scientific requirement heading to 1 km shelf-wide resolution
POLCOMS 2 km b/m : All systems
Strategy for Capability Computing

1. Performance Attributes of Key Applications
 – Trouble-shooting with Vampir & Paraver

2. Scalability of Numerical Algorithms
 – Parallel eigensolvers

3. Optimisation of Communication Collectives
 – MPI_ALLTOALLV and CASTEP

4. Memory-driven Approaches
 – in-core SCF & DFT, direct minimisation & CRYSTAL

5. Terасcaling Applications
 – NWChem, NAMD ...

6. Migration from replicated to distributed data
 – DL_POLY-3

7. Scientific drivers amenable to Capability Computing
 – Enhanced Sampling Methods, Replica Methods

HPCx Terascale Applications Team

Efficient Serial Execution
Summary

- UK has a New Facility for **Capability Computing**: HPCx
 - 66% Technology, 33% Support

- Key Strategic Applications Areas
 - Materials Science, Molecular Simulation, Molecular Electronic Structure, A&M Physics, Computational Engineering, Environmental Science

- HPCx Terascale Applications Team
 - Strategy for Capability Computing

- Range of Performance Results
 - size matters!
 - limited scalability for applications:
 - with global communications (CASTEP)
 - featuring linear algebra routines with extensive communication requirements (AIMPRO)
 - Linear scaling to 1024 processors for nearest neighbour CFD codes (PDNS3D, POLCOMS)
Acknowledgements

- HPCx Terascaling Team
 - Mike Ashworth
 - Ian Bush
 - Martyn Guest
 - David Henty
- IBM Technical Support
 - Luigi Brochard et al.
- NCSA Rick Kufrin (NAMD)
- CSAR Computing Service
- ORNL
- SARA
- PSC

Cray T3E ‘turing’,
Origin 3800 R12k-400 ‘green’
IBM Regatta ‘cheetah’
Origin 3800 R14k-500 ‘teras’
AlphaServer SC ES45-1000

Acknowledgements

- Martin Plummer
- Lorna Smith
- Kevin Stratford
- Andrew Sunderland